GROW: A gradient-based optimization workflow for the automated development of molecular models

نویسندگان

  • Marco Hülsmann
  • Thorsten Köddermann
  • Jadran Vrabec
  • Dirk Reith
چکیده

The concept, issues of implementation and file formats of the GRadient-based Optimization Workflow for the Automated Development of Molecular Models ’GROW’ (version 1.0) software tool are described. It enables users to perform automated optimizations of force field parameters for atomistic molecular simulations by an iterative, gradient-based optimization workflow. The modularly constructed tool consists of a main control script, specific implementations and secondary control scripts for each numerical algorithm, as well as analysis scripts. Taken together, this machinery is able to automatically optimize force fields and it is extensible by developers with regard to further optimization algorithms and simulation tools. Results on nitrogen are briefly reported as a proof of concept.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic configuration and collaborative scheduling in supply chains based on scalable multi-agent architecture

Due to diversified and frequently changing demands from customers, technological advances and global competition, manufacturers rely on collaboration with their business partners to share costs, risks and expertise. How to take advantage of advancement of technologies to effectively support operations and create competitive advantage is critical for manufacturers to survive. To respond to these...

متن کامل

A Novel Assisted History Matching Workflow and its Application in a Full Field Reservoir Simulation Model

The significant increase in using reservoir simulation models poses significant challenges in the design and calibration of models. Moreover, conventional model calibration, history matching, is usually performed using a trial and error process of adjusting model parameters until a satisfactory match is obtained. In addition, history matching is an inverse problem, and hence it may have non-uni...

متن کامل

Monte Carlo Simulation to Compare Markovian and Neural Network Models for Reliability Assessment in Multiple AGV Manufacturing System

We compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems equipped with automated guided vehicle (AGV) namely, the reliability of machines and the reliability of AGVs in a multiple AGV jobsho...

متن کامل

PERFORMANCE-BASED SEISMIC DESIGN OPTIMIZATION FOR MULI-COLUMN RC BRIDGE PIERS, CONSIDERING QUASI-ISOLATION

In this paper an optimization framework is presented for automated performance-based seismic design of bridges consisting of multi-column RC pier substructures. The beneficial effects of fusing components on seismic performance of the quasi-isolated system is duly addressed in analysis and design. The proposed method is based on a two-step structural analysis consisting of a linear modal dynami...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Physics Communications

دوره 181  شماره 

صفحات  -

تاریخ انتشار 2010